
55- /
/'/'6  '33

i9-5 TD ogressReport 42-112 February 15, 1993

The Analysis of Convolutional Codes via

the Extended Smith Algorithm
R. J. McEliece

CaliforniaInstitute of Technology, Department of Electrical Engineering

I. Onyszchuk
Communications Systems Research Section

Convolutional codes have been the central part of most error-control systems in

deep-space communication for many years. Almost all such applications, however,

have used the restricted class of(n,1), also known as "rate l/n," convolutional codes.
The more general class of (n,k) convolutional codes contains many potentially useful

codes, but their algebraic theory is dittlcult and has proved to be a stumbling block

in the evolution of convolutional coding systems. In this article, the situation is

improved by describing a set of practical algorithms for computing certain basic
things about a convolutional code (among them the degree, the Forney indices, a

minimal generator matrix, and a parity-check matrix), which are usually needed

before a system using the code can be built. The approach is based on the classic

Forney theory for eonvolutional codes, together with the extended Smith algorithm
for polynomial matrices, which is introduced in this article.

I. Introduction

In his celebrated paper on the algebraic structure of

convolutional codes, Forney [2] showed that by using the

algebra of k x n polynomial matrices, in particular the

invariant-factor theorem (aka the Smith Form), one can
transform an arbitrary generator matrix for an (n, k) con-

volutional code C into a noncatastrophie, basic, and ulti-

mately minimal, generator matrix for C. He also showed

how to find a polynomial inverse for a basic generator ma-
trix for C, and a basic generator matrix for the dual code

C J-. In this article, efficient ways are discussed to do all

these things. The main tool is an algorithm, called the

extended Smith algorithm, which is used to find the in-

variant factors of an arbitrary k x n matrix over an Eu-

clidean domain, which bears the same relationship to the
Usual invariant factor algorithm as the extended Euclid's

algorithm bears to the usual Euclid's algorithm.

A brief review of Euclid's algorithm (see e.g. [5, Section

i.i] or [9, Chapter 2]) is helpful. The algorithm's goal is to

take a pair (a, b) of elements from a Euclidean domain R,
and by repeated application of the division algorithm for R

to find the greatest common divisor d of a and b. The goal

of the extended Euclidean algorithm (see e.g. [6, Section

4.5.2] or [8, Section 8.4]) is to take the same pair, and not
only find d, but also find elements s and t of R, such that

sa+tb = d. The extended Euclidean algorithm has several

important applications in coding theory. For example, it

can be used to compute inverses in finite fields [9, Exam-

22



pie 4.2], decode BCH codes [8, Section 8.5], and to find
finite impulse response (FIR) inverses for noncatastrophic

(n, 1) convolutional generator matrices [1, Section 12.2].

Similarly, the goal of the Smith algorithm (see e.g. [3,

Section 6.2.4], [4, Section 6.3.3], or Smith's nineteenth-

century original article [10, Section 12.2]) is to take an
arbitrary k x n matrix G (with k < n) over an Euclidean

domain R, and by a sequence of elementary row and col-

umn operations, to reduce G to a k x n diagonal matrix

P = diag(71,...,Tk), whose diagonal entries are the in-

variant factors of G, i.e., 7i = Ai/Ai-1, where Ai is the
greatest common denominator of the i x i minors of G.

(Here, A0 = 1 is taken by convention.) Smith's algorithm
is reviewed in Section II.

The goal of the extended Smith algorithm, which is in-

troduced in this article, is to take the same input, and not
only find F, but also to find a k x k unimodular matrix X,

and an n x n unimodular matrix Y, such that XGY = F.

It is worthwhile to note that in the special case k = 1

and n = 2, the (extended) Smith algorithm reduces to

the (extended) Euclidean algorithm. The extended Smith
algorithm is described in detail in Section III.

Section IV describes how, given an arbitrary generator

matrix G for an (n,k) convolutional code, the extended
Smith algorithm can be used to efficiently compute the

things mentioned above (the degree, the Forney indices, a

minimal generator matrix, a polynomial inverse, a parity-

check matrix, etc., for the given code). Throughout this

article, all results are illustrated with an example ofa 2 x 4

matrix of polynomials over the binary field GF(2), which

is a generator matrix for a (4, 2) convolutional code over
GF(2).

!1. Smith's Algorithm

In this section, a careful description is given of Smith's

algorithm (which is often called the invariant-factor algo-

rithm), but a formal proof of its correctness is not given.

For that, refer to [3, Section 6.2.4], [4, Section 6.3.3], or

[11, Section 12.2].

Begin by recalling the definition of a general Euclidean

domain [8, Chapter 2]. It is an integral domain, i.e., a
ring that satisfies the cancellation property, together with

a "size" function la[ defined for every nonzero element a E

R. The size function must satisfy lal < labJ if b ¢ 0.

Furthermore, if a and b are arbitrary, and b ¢ 0, a can be

"divided" by b in the sense that there exist elements q (the

"quotient") and r (the "remainder") such that a = qb+ r,

where either r = 0 or else [r[ < [b[. For application to

the study of convolutional codes, always take R to the

ring of polynomials over a field F, where the "size" of a
polynomial is its degree. However, there are many other

Euclidean domains [8, Chapter 2], and Smith's algorithm

applies equally to all of them.

The central part of Smith's algorithm is the following

subalgorithm E, which takes as input an arbitrary matrix

A with entries from an Euclidean domain R, at least one

of which is nonzero, and, via elementary row and column

operations, transforms A into a matrix with the (1, 1) entry

nonzero, every other entry in row 1 and column 1 zero, and

every other entry in the matrix divisible by the (1,1) entry.

El. Move the entry in A of least size to position (1,1).

E2. If there is a nonzero entry in either row 1 or col-

urnn 1 that is not divisible by a11, use it to reduce
the size of a11, as follows:

E2a. If alj, the entry in row 1 and column j,

is not divisible by a11, then by the di-
vision algorithm there exist nonzero ele-

ments q and r such that alj = qaxl + r,
with I_1 < lal,ll. Thus, if q times col-

umn 1 is subtracted from column j, the

(1,j) entry will be changed to r, which

has a smaller size than al,1. If this entry
is moved to position (1, 1), the size of all
will have been reduced.

E2b. If ail, the entry in row i and column 1,

is not divisible by all, repeat the proce-

dure outlined in step E2a, with rows and
columns interchanged.

E3. Reduce all the entries in row 1 and column 1 (ex-

cept al,1 itself) to zero, as follows:

E3a. Since (by step E2) a U for j > 2 is divisible
by all, alj = qjall. Thus, by subtract-

ing qj times column 1 from column j, the

(1,j) entry will be transformed to zero.
Repeating this step for j = 2,...,r, the
first row will "zero out."

E3b. Repeat step E3a with rows and columns

interchanged.

E4. If there is a nonzero entry in A, say aij, which is
not divisible by all, add column j to column 1.

(This produces a nonzero entry in column 1 that

is not divisible by all.) Return to step E2.

Eh. Stop. The matrix A now has the desired property.

23



In the Smith algorithm itself, one applies subalgo-

rithm E successively to the original matrix G, then to

the matrix obtained from G by deleting row 1 and col-

umn 1, then by deleting row 2 and column 2, etc., until
either an all-zero matrix is encountered, or until all rows

and columns have been processed. The result is a k × n

diagonal matrix F = diag('yl,... ,7k), whose diagonal en-
tries are the invariant factors of G. The following example

illustrates the Smith algorithm, when the underlying Eu-

clidean domain is the ring of polynomials over the field

GF(2), in which the "size" of an element is its degree.

Example 1. Consider the following 2 x 4 matrix with

entries that are polynomials over GF(2):

o+ 1+o)1
Since the lowest degree term already appears in the (1, 1)
position, skip step El. Since the (1, 1) entry is 1, every

nonzero entry in row 1 and column 1 is divisible by the

(1, 1) entry, so skip step E2 as well. Executing step E3:
"zero out" the first row by adding 1 + D + D _ times col-
umn 1 to column 2, 1 + D 2 times column 1 to column 3,

and 1 + D times column 1 to column 4, thereby obtaining

successively

1 0 I+D 2 I+D)Gx = D 1 + D 3 D 2 1

1 0 0 l+D)G2 = D 1 + D 3 D -t- D 2 "4- 0 3 1

1 0 0 0 )G3 = D 1 + D 3 D + D 2 + D 3 1 + D + D 2

To zero the entry in position (2, 1), add D times row 1 to

row 2, thereby obtaining

1 0 0 0 /G4= 0 I+D 3 D + D2 + D 3 I + D + D _

This completes the operation of subalgorithm E on the

original matrix G. Now apply subalgorithm E to the 1 x 3

matrix obtained by deleting row 1 and column 1 from G4.

The lowest degree term in G4 appears in position (2, 4), so

by interchanging columns 2 and 4, it is moved to position

(2,2):

0 0 :)Gs = 1 + D + D 2 D + D 2 + D 3 1 D 3

At this point, all of the remaining entries in row 2 are

divisible by the (2, 2) entry: D+D2+D 3 = D.(I+D+D2),

and I+D 3=(I+D).(I+D+D2). Thus by addingD

times column 2 to column 3, and then I+D times column 2

to column 4, compute successively

(1° o o:)G6 = 1 + D + D 2 0 1 D 3

0 0:)G7 = 1 + D + D 2 0

This completes the operation of the Smith algorithm on

G. The matrix G7 is the invariant-factor form for G; in

particular, the invariant factors of G are 71 = 1 and 72 =
l+D+D 2. •

III. The Extended Smith Algorithm

The previous section showed, in computational detail,

how the Smith algorithm works. Beginning with the ma-
trix Go = G, it produces a sequence of k × n matrices Gi,

where Gi+I is derived from Gi by either an elementary
row operation or an elementary column operation. This is

represented algebraically as

Gi+x = Ei+tGiFi+l (1)

where Ei+x and Fi+x are k x k and n x n elementary ma-

trices, respectively. If Gi+l is obtained from Gi via a row

operation, then El+ 1 is a nontrivial k x k elementary ma-
trix, but Fi+a = I,,. If Gi+l is obtained from Gi via a

column operation, then Fi+t is a nontrivial n x n elemen-

tary matrix, but Ei+a = Ik. After a finite number N of
steps, GN = F.

The extended Smith algorithm builds on the Smith al-

gorithm. Whereas the Smith algorithm works only with

the sequence Go,G1,...,GN, the extended Smith algo-
rithm also works with a sequence of unimodular k x k

matrices Xo,..., XN, and a sequence of unimodular n x n

matrices Yo,..., YN. The sequences (Xi) and (_) are ini-

tialized as X0 = Ik and Yo = In, and updated via the rule

[cf. Eq. (1)]

Xi+ 1 -: Ei+lX i (2)

24



_+i = YiF_+1 (3)

The following simple lemma is the key to the extended

Smith algorithm.

Lemma.

XiG-'Yi = Gi for i = 0, 1,..., N (4)

Proof. Since X0 = Ik and Y0 = In, Eq. (4) holds for

i = 0. Assuming now that Eq. (4) holds for a given value
of i, multiply both sides of Eq. (4) on the left by Ei+l and

on the right by Fi+l

Ei+IXiGYiFi+I = Ei+lGiFi+l (5)

By Eq. (1), the right side of Eq. (5) is equal to Gi+l. Thus

(Ei+IXi)G(YiFi+I) = Gi+x (6)

But Ei+IX_ = Xi+l by Eq. (2) and Y_Fi+I = Y/+I by

Eq. (3), so Eq. (6) becomes simply Xi+IGYi+I -= Gi+l,
which proves Eq. (4) by induction. •

If Eq. (4) is specialized with i = N,

xNvv_ = r (7)

which is the desired extended Smith diagonalization of G.

A convenient way to implement the extended Smith al-

gorithm is to extend the original matrix G to dimensions

(. + k) × (_ + k) as follows:

G,=(G Zk ) (8)In 0nxk

where in Eq. (8) Onx& is an n x k matrix of zeros. Then

if the sequence of elementary row and column operations

generated by the Smith algorithm applied to G is per-
formed on the extended matrix G I, after i iterations, the

resulting matrix G_ has the form

, ( Gi Xi )a_= _. 0.×k (9)

Thus, after N steps, the matrices XN and YN in Eq. (7)

appear as the upper-right and lower-left blocks of G_v , re-
spectively. All this is illustrated by extending the example
from Section II.

Example 2. Begin as in Example 1, with the following 2 x 4 matrix over GF(2)[D]:

(1 I+D+D _ I+D 2 I+D)G=G0= I+D+D _ D _ I

Then the corresponding matrix G _ [cf. Eq. (S)] is

G1= G_ =
1 o1

1 0 0 0

0 1 0 0

0 0 1 0

In Example 1, G1, G2, and Ga are obtained from Go by successively adding 1 + D + D 2 times column 1 to column 2,

1 + D 2 times column 1 to column 3, and 1 + D times column 1 to column 4. If the same sequence of operations is

performed to G0, one obtains successively

25



1 0 I+D 2 I+D 1 0
D 1 + D a D 2 1 0 1

1 I+D+D 2 0 0 0 0
0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

/i o o1  1i/I+D+D 2 I+D 2 0 0

1 0 0 0
0 1 0 0

0 0 1 0

/i o o oli/1_ 1+,,3 _÷_+_31÷_,÷_o_I+D+D 2 I+D 2 I+D 0
1 0 0 0

0 1 0 0

0 0 1 0

Next, adding D times row 1 to row 2, as was done to obtain G4 from Ga, obtain

/io 0 01i)I+D+D 2 I+D 2 I+D 0

1 0 0 0
0 1 0 0

0 0 1 0

Interchanging columns 2 and 4, obtain10 0 0
0 I+D+D 2 D+D 2+D 3 I+D 3 D 1
1 I+D I+D 2 I+D+D 2 0 o
0 0 0 1 0

0 0 1 0 0
0 1 0 0 0

Finally, adding D times column 2 to column 3, and 1 + D times column 2 to column 4, one computes successively

(i0 0 0li/I+D I+D I+D+D 2 0

0 0 1 0

0 1 0 0

1 D 0 0

and

26



lio oolil0 0I+D I+D D 0
0 0 1 0
0 1 0 0

1 D I+D 0

Thus the extended Smith decomposition of the original matrix G is given by [cf. Eq. (7)]

01) 0 0 10• G- 0 1

1 D I+D

0I+D+D 2 0

In Section V, the decomposition of Example 2 will be used in the analysis of the (4, 2) convolutional code generated by

G, as an illustration of the general results to be expounded upon in Section IV.

IV. Application to the Analysis of
Convolutional Codes

In this section, given an arbitrary generator matrix G

for an (n, k) convolutional code C, one can efficiently find,

among other things: a basic generator matrix, say Gbasic

for C; a polynomial inverse for Gbasic; a minimal generator

matrix for C; and a basic generator matrix for the dual
code C a- . The central tool needed to do all this is the

extended Smith algorithm introduced in Section III.

Assume then that G is a k × n generator matrix for

an (n, k) convolutional code over the field F, i.e., a k × n
matrix of rank k over the field F(D) of rational functions

over F. By multiplying the ith row of G by the least com-

mon multiple of the denominators in that row, one easily
obtains an equivalent generator matrix, all of whose en-

tries are polynomials over F, i.e., elements of F[D]. Since

F[D] is an Euclidean domain, one may apply the extended

Smith algorithm described in Section III, thereby obtain-

ing a decomposition of Eq. (7). In what follows, the matri-
ces XN and ]IN produced by the extended Smith algorithm

will be denoted simply by X and Y.

The matrices X, Y, and I" contain much valuable in-

formation about the code C and the generator matrix G.

To extract this information, however, first define several

useful pieces of these matrices, called Fk, Fk, K, and H

(in what follows, r = n - k)

F_ = leftmost k columns of P = diag(71,... ,Tk)

(dimensions: k x k) (10)

Fk = 72" F_-1 = diag(Tk/71,..., 7k/3'k)

(dimensions: k x k) (11)

K = leftmost k columns of Y

(dimensions: n x k) (12)

H = rightmost r columns of Y

(dimensions: n x r) (13)

The following theorem describes the useful outputs of

the extended Smith algorithm when applied to G. (For
terminology not fully explained here, refer to Forney [2].)

Theorem 1. With the matrices Fk, Fk, K, and H

defined as in Eqs. (10)-(13), one has the following:

(a) A basic generator matrix for C: Gbasic = F-_IXG.

(That is, Gbasic is obtained by dividing the ith row of
XG by the invariant factor 7i, for i = 1,..., k.)

(b) A polynomial inverse for Gbasic: K.

(c) A polynomial pseudo-inverse for G, with factor 7_:
KFkX. (In particular, if G is already basic, i.e., if

Fk = I_, then KX is a polynomial inverse for G.)

(d) A basic generator matrix for Ca-, i.e., a parity-check
matrix for C: H T.

27



Proof. From Eq. (7) with X = Xlv and Y = YN, one
has

xa= rB (14)

where B = y-1. Now B is an nxn unimodular polynomial

matrix. Let U be the k x n matrix consisting of the first

k rows of B, and L be the r x n matrix consisting of the

last r rows of B. Then, since r = (rk 0kxr) where 0k×r

is a k x r all-zeros matrix, it follows that

FB=(Fk 0k×_)(L U) =F_U (15)

so that, combining Eqs. (14) and (15)

u=r;1xa (16)

From Eq. (16), U is row equivalent to G. Furthermore,

since U = (I6 06×r )B, and B is unimodular, it follows
that the invariant factors of U are all equal to 1, and so U is

a basic generator matrix for C. This proves Theorem l(a).

To prove Theorem l(b), use the fact that Y and B are
inverse matrices, so that

(uK
BY= (If g)= \LIe LH

I6 06x, "_ (17)=I.= 0,,,6 I, ]

It follows from Eq. (17) that UK = I6, so that K is a

polynomial inverse for the basic generator matrix U, which

proves Theorem l(b).

To prove Theorem l(c), suppose that J is an n x k

polynomial pseudo-inverse for G with (polynomial) factor

¢(D), i.e., that GJ = ¢I6. Then

XGYY-1JX -1 = XGJX -_ = X(¢I6)X -1 =¢h (18)

If now J' :Ji "_ where J; is k x k and J[ is r x k,
= t,J )

it follows from Eq. (19) that j_ = cr_ -_. But since J'
is a polynomial matrix, and F_ = diag(7;-1,...,'y_-*), it

follows that ¢ must be a multiple of 76. Conversely, if

¢ = "f_, so that J/_ = 7kr_ -1 = F6 and J[ = 0rx6, then

J'= ( Fk ) "Thus'J=YJ'X=K_kXisap°lyn°mialO_x6

pseudo-inverse with factor 76, which proves Theorem l(c).

To prove Theorem l(d), one has to show that the set
of codewords in the code generated by G, i.e., the set of

n-dimensional F(D)-vectors y of the form y = xG, is iden-
tical to the set of vectors y such that yH = 0. Thus, let

Y1 = {Y : Y = xG} and Y_ = {y : yH = 0}. It will be
shown that ]I1 = I<'2.

Since, as in Theorem l(a), the matrix U, defined to be

the first k rows of B = y-l, is (a basic generator matrix)

equivalent to G, it follows that Y1 = {Y : Y = zU}. Thus,

if y E ]I1, Y = xU for some z and so yH = (xU)H =

z(UH) = 0, since by Eq. (17), vg = 06×.. Thus, Yx C_]I2-
On the other hand, if y is arbitrary, then since B -1 = Y,

= y(KU + HL) = (yK)U + (yH)L (20)

Now suppose y E Yu, i.e., yH = 0. Then from Eq. (20)

y = (yK)U = xU, where x = yK, and so y E ]I1. Thus,
]I1 C Y2, which completes the proof of Theorem l(d). •

In the next section these results will be briefly illus-

trated with a simple example.

V. An Example Convolutional Code

To illustrate the results of this article, consider the fol-

lowing generator matrix G for a binary (4, 2) convolutional
code:

But from Eq. (7), XGY = r = (r6 06xr). Thus, if
the matrix Y-1jX-1 is denoted by ji, j_ is a polyno-

mial matrix (since X and Y are unimodular) and Eq. (18)
becomes

(F6 0)jl= eh (19)

1 I+D+D 2 I+D _ I+D)G= D I+D+D 2 D 2 1

In Section III the extended invariant-factor decomposition

of G was found to be XG-'Y = F, where

28



0F= I+D+D 2 0

y (i1+°oO1o11+o
Thus, the matrices defined in Eqs. (10)-(13) are as follows:

(1 0 )Fk= 0 I+D+D 2

['l'= ( I+D+D20 0)1

( , 000) K= I+D 0 0

H=( I+D 0 1 D) TD 1 0 I+D

Using the prescriptions in Theorem 1, one quickly ob-

tains the following:

(a) A basic generator matrix for C:

Gbasi¢ = F'_IXG

{1 I+D+D 2 I+D 2 I+D_

= _,0 I+D D 1 )

(b) A polynomial inverse for Gbasic:

(i1+o)K- 0
0

0 1

(c) A polynomial pseudo-inverse for G, with factor 72 =
I+D+D2:

KFkX =

(d) A (basic} generator matrix for Ca-:

HT (I+D 0 1 D )= D 1 0 I+D

Finally, note that in this case neither of the basic gener-
ator matrices Gbasic or H T is minimal. To minimize them,

follow the simple algorithm originally described in [2], or

perhaps more lucidly in Kailath [4, Section 6.3.2] (where
minimal matrices are, however, called row-reduced). The

idea is to use elementary row operations on G to reduce

the degree of the highest degree terms in some row, as

long as this is possible. For example, to minimize Gb_i¢,
multiply the second row by D and add it to the first row,

obtaining

(_ 1 1 1)Gl= I+D D 1

Since elementary row operations cannot reduce the row de-

grees further, the matrix G _ is a minimal generator matrix
for the code C. (Indeed, at this point, one can recognize C

as the dfree = 4 partial-unit-memory (4, 2) code first found

by Lauer [7, Table 1].) To find a polynomial inverse for

G _, note that G _ = TG, where T is a unimodular k x k

polynomial matrix, and so K _ = KT -1 is a polynomial
inverse for G'. In this example, simply multiply the first

column of K by D and subtract it from the second column,

thereby obtaining the following polynomial inverse for the

minimal generator matrix Gq

(i1)K'= 0
0
1

To minimize H T, simply add row 2 to row 1, thereby

obtaining the following minimal generator matrix for the
dual code:

H, (111 1 )= 1 0 I+D

In this case, the dual code is isomorphic to the original

code.

29



The Forney indices of an (n, k) convolutional code are

the degrees of the rows of a minimal generator matrix, and

the degree of the code is the sum of the Forney indices.
In this example, the degree of both C and C a- is 1, and

the Forney index of both codes is (0, 1). It is a general
theorem that deg C = deg C a- (see [2, Theorem 7]), but the

equality of the Forney indices in this case is more or less
accidental.

References

[1] R. E. Blahut, Theory and Practice of Error-Correcting Codes, Reading, Mas-
sachusetts: Addison-Wesley, 1983.

[2] G. D. Forney, "Convolutional Codes I: Algebraic Structure," IEEE Transactions
on Inform. Theory, vol. IT-16, pp. 720-738, November 1970.

[3] F. R. Gantmacher, The Theory of Matrices, Volume I, New York: Chelsea Pub-

lishing Company, 1977.

[4] T. Kailath, Linear Systems, Englewood Cliffs, N. J.: Prentice-Hall, 1980.

[5] D. E. Knuth, The Art of Computer Algorithms, Volume 1: Fundamental Algo-
rithms, second edition, Reading, Massachusetts: Addison-Wesley, 1973.

[6] D. E. Knuth, The Art of Computer Algorithms, Volume 2: Seminnmerical Algo-
rithms, second edition, Reading, Massachusetts: Addison-Wesley, 1981.

[7] G. S. Lauer, "Some Optimal Partial-Unit-Memory Codes," IEEE Transactions

on Inform. Theory, vol. IT-25, pp. 240-243, March 1979.

[8] R. J. McEliece, The Theory of Information and Coding, Reading, Massachusetts:

Addison-Wesley, 1977.

[9] R. J. McEliece, Finite Fields for ComputerScientists and Engineers, Boston:
Kluwer, 1987.

[10] H. :1. S. Smith, "On Systems of Linear Indeterminate Equations and Congru-
ences," Philos. Transactions of the Royal Society of London, vol. 151, pp. 293-

326, 1861.

[11] B. L. van der Waerden, Algebra, Volume e, New York: Frederick Ungar, 1970.

3o


